Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species.
نویسندگان
چکیده
The host range of retroviruses is influenced by antiviral proteins such as TRIM5, a restriction factor that recognizes and inactivates incoming retroviral capsids. Remarkably, in Owl monkeys (omk), a cyclophilin A (CypA) cDNA has been transposed into the TRIM5 locus, resulting in the expression of a TRIM5-CypA fusion protein (TRIMCyp) that restricts retroviral infection based on the retroviral capsid-binding specificity of CypA. Here, we report that the seemingly improbable genesis of TRIMCyp has, in fact, occurred twice, and pigtailed macaques (pgt) express an independently generated TRIMCyp protein. The omkTRIMCyp and pgtTRIMCyp proteins restrict infection by several lentiviruses, but their specificities are distinguishable. Surprisingly, pgtTRIMCyp cannot bind to or restrict HIV-1 capsids as a consequence of a point mutation close to the Cyp:capsid-binding interface that was acquired during or after transposition of pgtCypA. However, the same mutation confers on pgtTRIMCyp the ability to restrict FIV in the presence of cyclosporin A, a drug that normally abolishes the interaction between pgtTRIMCyp or omkTRIMCyp and lentiviral capsids. Overall, an intuitively unlikely evolutionary event has, in fact, occurred at least twice in primates and represents a striking example of convergent evolution in divergent species.
منابع مشابه
Evolution of cyclophilin A and TRIMCyp retrotransposition in New World primates.
Host cell factors modulate retroviral infections. Among those, cyclophilin A (CypA) promotes virus infectivity by facilitating virus uncoating or capsid unfolding or by preventing retroviral capsid interaction with cellular restriction factors. In Aotus species, a retrotransposed copy of CypA inserted into the tripartite motif 5 (TRIM5) gene encodes a fusion protein which may block human immuno...
متن کاملTRIM5 Retroviral Restriction Activity Correlates with the Ability To Induce Innate Immune Signaling.
UNLABELLED Host restriction factor TRIM5 inhibits retroviral transduction in a species-specific manner by binding to and destabilizing the retroviral capsid lattice before reverse transcription is completed. However, the restriction mechanism may not be that simple since TRIM5 E3 ubiquitin ligase activity, the proteasome, autophagy, and TAK1-dependent AP-1 signaling have been suggested to contr...
متن کاملProteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins.
The primate TRIM5 proteins constitute a class of restriction factors that prevent host cell infection by retroviruses from different species. The TRIM5 proteins act early after virion entry and prevent viral reverse transcription products from accumulating. We recently found that proteasome inhibitors altered the rhesus monkey TRIM5alpha restriction of human immunodeficiency virus type 1 (HIV-1...
متن کاملA Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1.
Lv1 restriction of HIV-1 in the cells of Old World monkeys is associated with the expression of the Trim5 gene. Uniquely, in owl monkey kidney cells, HIV-1 restriction is dependent on the ability of incoming viral capsid protein to bind cyclophilin A (CypA). Cloning of the owl monkey Trim5 gene now reveals the presence of an inserted CypA pseudogene within intron 7 of the Trim5 gene. This inser...
متن کاملEvolution of a TRIM5-CypA Splice Isoform in Old World Monkeys
The TRIM family proteins share a conserved arrangement of three adjacent domains, an N-terminal RING domain, followed by one or two B-boxes and a coiled-coil, which constitutes the tripartite-motif for which the family is named. However, the C-termini of TRIM proteins vary, and include at least nine evolutionarily distinct, unrelated protein domains. Antiviral restriction factor TRIM5alpha has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 9 شماره
صفحات -
تاریخ انتشار 2008